Machine Learning - Standard Deviation

Kwani ne standard deviation?

Standard deviation (Standard Deviation, kuma kuma yana kira mean variance) ita:

Standard deviation da yake da kwayar:

Standard deviation da yake da girma:

Misali: dukiyar da na gina kwayar 7 mota:

speed = [86,87,88,86,87,85,86]

Standard deviation ita:

0.9

Ina nufin: kaiyaki na yadda da ke cikin yadda na 0.9, kuma 86.4.

Duba: a kara da gina kwayar nufin da yake da kwayar:

speed = [32,111,138,28,59,77,97]

Standard deviation ita:

37.85

Ina nufin: kaiyaki na yadda da ke cikin kwayar yadda (yadda ita 77.4) 37.85.

Duba: kaiyaki na standard deviation da yake da girma:

NumPy modul da ke da hanci don kara standard deviation:

实例

Kama ka wajen: NumPy std() Fannan kowace: nuna standard deviation:

import numpy
speed = [86,87,88,86,87,85,86]
x = numpy.std(speed)
print(x)

运行实例

实例

import numpy
speed = [32,111,138,28,59,77,97]
x = numpy.std(speed)
print(x)

运行实例

Variance

Variance ita daya dake bayanin nufin: nuna da kwayar daga yadda:

Dan da yake amfana da root na variance, a zai gana standard deviation!

Ma kuma, kama ka kara standard deviation kara yadda, a zai gana variance!

Kung gana kara variance, ka mabaya ka wajen:

1. Fannan kowace: kira yadda:

(32+111+138+28+59+77+97) / 7 = 77.4

2. Fannan kowace: aro da yadda:

 32 - 77.4 = -45.4
111 - 77.4 =  33.6
138 - 77.4 =  60.6
 28 - 77.4 = -49.4
 59 - 77.4 = -18.4
 77 - 77.4 = - 0.4
 97 - 77.4 =  19.6

3. Fannan kowace: aro da farkin:

(-45.4)2 = 2061.16 
 (33.6)2 = 1128.96 
 (60.6)2 = 3672.36 
(-49.4)2 = 2440.36 
(-18.4)2 =  338.56 
(- 0.4)2 =    0.16 
 (19.6)2 =  384.16

4. 方差是这些平方差的平均值:

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1432.2

幸运的是,NumPy 有一种计算方差的方法:

实例

使用 NumPy var() 方法确定方差:

import numpy
speed = [32,111,138,28,59,77,97]
x = numpy.var(speed)
print(x)

运行实例

标准差

如我们所知,计算标准差的公式是方差的平方根:

√ 1432.25 = 37.85

或者,如上例所示,使用 NumPy 计算标准差:

实例

请使用 NumPy std() 方法查找标准差:

import numpy
speed = [32,111,138,28,59,77,97]
x = numpy.std(speed)
print(x)

运行实例

符号

标准差通常用 Sigma 符号表示:σ

方差通常由 Sigma Square 符号 σ2 表示

章节总结

标准差和方差是机器学习中经常使用的术语,因此了解如何获取它们以及它们背后的概念非常重要。