Machine Learning - Scaling
- Previous Page Multiple Regression
- Next Page Training/Testing
Feature Scaling (Scale Features)
When your data has different values, even with different units of measurement, it may be difficult to compare them. How many kilograms is a meter compared to a kilogram? Or altitude compared to time?
The answer to this question is scaling. We can scale the data to new values that are easy to compare.
Please see the table below, which is in line with what we haveMultiple RegressionThe dataset used in Chapter 1 is the same, but this time, the Volume column contains units in liters instead of ccm (1.0 instead of 1000).
Car | Model | Volume | Weight | CO2 |
---|---|---|---|---|
Toyota | Aygo | 1.0 | 790 | 99 |
Mitsubishi | Space Star | 1.2 | 1160 | 95 |
Skoda | Citigo | 1.0 | 929 | 95 |
Fiat | 500 | 0.9 | 865 | 90 |
Mini | Cooper | 1.5 | 1140 | 105 |
VW | Up! | 1.0 | 929 | 105 |
Skoda | Fabia | 1.4 | 1109 | 90 |
Mercedes | A-Class | 1.5 | 1365 | 92 |
Ford | Fiesta | 1.5 | 1112 | 98 |
Audi | A1 | 1.6 | 1150 | 99 |
Hyundai | I20 | 1.1 | 980 | 99 |
Suzuki | Swift | 1.3 | 990 | 101 |
Ford | Fiesta | 1.0 | 1112 | 99 |
Honda | Civic | 1.6 | 1252 | 94 |
Hundai | I30 | 1.6 | 1326 | 97 |
Opel | Astra | 1.6 | 1330 | 97 |
BMW | 1 | 1.6 | 1365 | 99 |
Mazda | 3 | 2.2 | 1280 | 104 |
Skoda | Rapid | 1.6 | 1119 | 104 |
Ford | Focus | 2.0 | 1328 | 105 |
Ford | Mondeo | 1.6 | 1584 | 94 |
Opel | Insignia | 2.0 | 1428 | 99 |
Mercedes | C-Class | 2.1 | 1365 | 99 |
Skoda | Octavia | 1.6 | 1415 | 99 |
Volvo | S60 | 2.0 | 1415 | 99 |
Mercedes | CLA | 1.5 | 1465 | 102 |
Audi | A4 | 2.0 | 1490 | 104 |
Audi | A6 | 2.0 | 1725 | 114 |
Volvo | V70 | 1.7 | 1523 | 109 |
BMW | 5 | 2.0 | 1705 | 114 |
Mercedes | E-Class | 2.1 | 1605 | 115 |
Volvo | XC70 | 2.0 | 1746 | 117 |
Ford | B-Max | 1.6 | 1235 | 104 |
BMW | 2 | 1.6 | 1390 | 108 |
Opel | Zafira | 1.6 | 1405 | 109 |
Mercedes | SLK | 2.5 | 1395 | 120 |
It is difficult to compare displacement 1.0 with weight 790, but if we scale them to comparable values, we can easily see how much one value is compared to another.
There are many methods to scale data, in this tutorial, we will use a method called standardization (standardization).
The standardization method uses the following formula:
z = (x - u) / s
where z is the new value, x is the original value, u is the mean, and s is the standard deviation.
If you obtain weight Column, the first value is 790, and the scaled value is:
(790 - 1292.23) / 238.74 = -2.1
If you obtain volume Column, the first value is 1.0, and the scaled value is:
(1.0 - 1.61) / 0.38 = -1.59
Now, you can compare -2.1 with -1.59 instead of comparing 790 with 1.0.
You do not need to perform this operation manually, the Python sklearn module has a function named StandardScaler()
method, which returns a Scaler object with the transformed dataset method.
Example
Scale all values in the Weight and Volume columns:
import pandas from sklearn import linear_model from sklearn.preprocessing import StandardScaler scale = StandardScaler() df = pandas.read_csv("cars2.csv") X = df[['Weight', 'Volume']] scaledX = scale.fit_transform(X) print(scaledX)
Results:
Please note, the first two values are -2.1 and -1.59, corresponding to our calculations:
[[-2.10389253 -1.59336644]] [-0.55407235 -1.07190106] [-1.52166278 -1.59336644] [-1.78973979 -1.85409913] [-0.63784641 -0.28970299] [-1.52166278 -1.59336644] [-0.76769621 -0.55043568] [ 0.3046118 -0.28970299] [-0.7551301 -0.28970299] [-0.59595938 -0.0289703 ] [-1.30803892 -1.33263375] [-1.26615189 -0.81116837] [-0.7551301 -1.59336644] [-0.16871166 -0.0289703 ] [ 0.14125238 -0.0289703 ] [ 0.15800719 -0.0289703 ] [ 0.3046118 -0.0289703 ] [-0.05142797 1.53542584] [-0.72580918 -0.0289703 ] [ 0.14962979 1.01396046] [ 1.2219378 -0.0289703 ] [ 0.5685001 1.01396046] [ 0.3046118 1.27469315] [ 0.51404696 -0.0289703 ] [ 0.51404696 1.01396046] [ 0.72348212 -0.28970299] [ 0.8281997 1.01396046] [ 1.81254495 1.01396046] [ 0.96642691 -0.0289703 ] [ 1.72877089 1.01396046] [ 1.30990057 1.27469315] [ 1.90050772 1.01396046] [-0.23991961 -0.0289703 ] [ 0.40932938 -0.0289703 ] [ 0.47215993 -0.0289703 ] [ 0.4302729 2.31762392]
Predict CO2 Value
Multiple RegressionThe task of this chapter is to predict the carbon dioxide emissions of a car from its weight and displacement without knowing any other information.
After scaling the dataset, the scaling factor must be used when predicting the values:
Example
Predict the carbon dioxide emissions of a 1.3-liter car weighing 2300 kilograms:
import pandas from sklearn import linear_model from sklearn.preprocessing import StandardScaler scale = StandardScaler() df = pandas.read_csv("cars2.csv") X = df[['Weight', 'Volume']] y = df['CO2'] scaledX = scale.fit_transform(X) regr = linear_model.LinearRegression() regr.fit(scaledX, y) scaled = scale.transform([[2300, 1.3]]) predictedCO2 = regr.predict([scaled[0]]) print(predictedCO2)
Results:
[107.2087328]
- Previous Page Multiple Regression
- Next Page Training/Testing